

Daily Tutorial Sheet-1

JEE Main (Archive)

1.(B) Number of OH groups = $\frac{M_F - M_0}{42}$; M_F = mol mass of acetylated product

 M_0 = mol mass of given compound

$$\Rightarrow \qquad \text{Number of OH groups} = \frac{390 - 180}{42} = 5$$

- $\textbf{2.(D)} \qquad \text{RCOOH} \xrightarrow{\quad \text{NH}_3 \quad} \text{RCOONH}_4 \xrightarrow{\quad \Delta \quad} \text{RCONH}_2 \xrightarrow{\quad \text{Br}_2 \quad} \text{RNH}_2$
- 3.(C) $RCH_2COOH + Br_2 \xrightarrow{P} R CH COOH + HBr (HVZ reaction)$ Br
- **4.(B)** Reduction of ester by using Na / C_2H_5OH
- **5.(C)** Reactivity of carboxylic acid is more than that of amide towards alcohol because H_2O is good leaving group and NH_3 is poor leaving group. Visualise lactone formation.
- **6.(B)** DIBAL-H reduces only ester group to an aldehyde and alcohol.

- **7.(A)** A good leaving group increase the reactivity of acid derivative Order of leaving group is $-Cl > -O C CH_3 > -OCH_3 > -NH_2$
- **8.(D)** More is the electrophilic character on ester carbon easier will be the alkaline hydrolysis:

III > II > I > IV

9.(C)
$$(A)$$
 (B) (B) (C) (C) (C) (C)

17.(A) Diborane reduces carboxylic acid to 1°-alcohols.